Triplet order parameters for three-dimensional Ising models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1976 J. Phys. A: Math. Gen. 9407
(http://iopscience.iop.org/0305-4470/9/3/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:15

Please note that terms and conditions apply.

Thiplet order parameters for three-dimensional Ising models

D W Wood and H P Griffiths
Mathematics Department, University of Nottingham, University Park, Nottingham NG7 2RD, UK

Received 2 September 1975, in final form 29 October 1975

Abstract

We have derived power series expansions for triplet order parameters of three-dimensional Ising models with pure pair interactions, and pure quartet interactions. We investigate the vanishing of these order parameters and conclude that they become zero at and above the critical temperature, and probably have the same critical exponent as the conventional order parameter $\left\langle\sigma_{i}\right\rangle$.

lna recent publication, Baxter (1975) has obtained an expression for a triplet order prameter $\left\langle\sigma_{1} \sigma_{2} \sigma_{3}\right\rangle$ of a planar Ising model with nearest-neighbour pair interactions, mere σ_{1}, σ_{2}, and σ_{3} are the vertices of the mesh triangles on the triangular lattice. This model is an example of types of Ising models which have previously been introduced by he present authors (Wood and Griffiths 1973), having Hamiltonians in the form

$$
\begin{equation*}
\mathscr{H}=-J_{1} \sum \sigma_{m}-J_{2} \sum \sigma_{m} \sigma_{n}-J_{3} \sum \sigma_{m} \sigma_{n} \sigma_{p}-J_{4} \sum \sigma_{m} \sigma_{n} \sigma_{p} \sigma_{q}-\ldots \tag{1}
\end{equation*}
$$

mere the summations of products of $m \sigma$-variables are over the smallest s_{m} simplexes d the underlying lattice structure.
On restricting equation (1) to contain only three coupling constants, we can use the tiple-moment power series of the free energy f to form the thermodynamic functions

$$
\begin{equation*}
M_{i}^{i \mathrm{k} k}\left(J_{k}\right)=-\lim _{J_{i} \rightarrow 0^{+}}\left(\frac{\partial f}{\partial J_{i}}\right)_{J_{i}=0} \tag{2}
\end{equation*}
$$

Which are the expectation values of the s_{i} simplex product of σ-variables considered to belocated in a J_{i}-type external field. Triplet order parameters can be formed by setting $i=3$ in equation (2), then $M_{3}^{1,2}$ and $M_{3}^{2,4}$ are both parameters which one expects to mishat high temperatures, independently of lattice type. Specific lattice types can also fidd other examples which should possess the characteristic features of an order prameter, thus $M_{2}^{3,4}$ for the FCC lattice vanishes at high temperatures but is positive at enough temperatures. Such results are readily established through the term strecture of the high- and low-temperature expansions of f (see Wood and Griffiths 1973).

For the plane triangular lattice; $M_{1}^{3,2}$ and $M_{3}^{1,2}$ are known exactly (Potts 1952, Baxter 1975), both functions possess the same critical exponent value of $\beta=\frac{1}{8}$ and raikhabove T_{c}. Highly plausible exact forms have been conjectured for $M_{1}^{2,3}$ and $M_{2}^{1,3}$ Bater et al 1975); here, also, the same critical exponents are found at T_{c}, i.e.
$\beta_{M}=\beta_{P}=\frac{1}{12}$, however, no proof of such an exponent equality has yet been given. As power series expansions of both $M_{1}^{2,3}$ and $M_{2}^{1,3}$ were instrumental in 'guessing' these exact solutions, it is therefore of interest to derive further examples of such series.

We note, in passing, that the technique of using a pole-residue plot for the Padé approximants (PA) to the logarithmic derivative of a function with a known singular point can be effective in refining an exponent estimate. This point is tested and verified in figure 1, where twelve terms in the expansion of $M_{3}^{1,2}$ and $M_{2}^{1,3}$ (Baxter et al 1975) have been used; in this way a wide scatter on such approximations can be ordered to form a much improved estimate of a critical exponent (Griffiths and Wood 1975, Ritchie and Essam 1975).

The present authors have developed low-temperature power series of f for threedimensional Ising models on the FCC and BCC lattices (Griffiths and Wood 1972, 1974), which have Hamiltonians in the form of equation (1). The new order parameters considered here are the triplet functions $\left\langle\sigma_{1} \sigma_{2} \sigma_{3}\right\rangle$ for pure pair and pure quartet

Figure 1. Residue-pole plots of the PA estimates of the critical point (u^{\prime}) against exponent estimates of β for (a) the triplet order parameter $M_{3}^{1.2}$ and (b) the polariztion $M_{2}^{1,3}$ of the triangular lattice using 12 terms in the expansions; the exact values are $\frac{1}{8}$ asd $\frac{1}{2}$ respectively.

的racions in a triplet external field, where σ_{1}, σ_{2}, and σ_{3} are at the vertices of the

$$
\begin{align*}
& \mu_{3}^{12}=1-6 u_{2}^{6}-60 u_{2}^{11}+78 u_{2}^{12}-104 u_{2}^{15}-588 u_{2}^{16}+1920 u_{2}^{17}-1298 u_{2}^{18}-384 u_{2}^{19} \\
&-2088 u_{2}^{20}-2068 u_{2}^{21}+32496 u_{2}^{22}-52932 u_{2}^{23}+13818 u_{2}^{24}-16500 u_{2}^{25} \\
&+65010 u_{2}^{26}+369136 u_{2}^{27}-1308588 u_{2}^{28}+1185348 u_{2}^{29}-269108 u_{2}^{30} \\
&+1670220 u_{2}^{31}+\ldots \quad \text { (FCC lattice) } \tag{3}\\
& M_{3}^{24}=1-6 u_{4}^{4}-60 u_{4}^{6}-694 u_{4}^{8}-8988 u_{4}^{10}-125196 u_{4}^{12}-\ldots \quad \text { (FCC lattice) } \tag{4}\\
& \mu_{3}^{12}=1-6 u_{2}^{7}-72 u_{2}^{13}+90 u_{2}^{14}-160 u_{2}^{18}-806 u_{2}^{19}+2608 u_{2}^{20}-1680 u_{2}^{21} \\
&-96 u_{2}^{22}-696 u_{2}^{23}-3448 u_{2}^{24}-2852 u_{2}^{25}+51656 u_{2}^{26}-80344 u_{2}^{27} \\
&+29394 u_{2}^{28}-15036 u_{2}^{29}-28080 u_{2}^{30}+130060 u_{2}^{31}+679112 u_{2}^{32} \\
&-2338588 u_{2}^{33}+\ldots \quad \text { (BCC (1,2) lattice (Dalton and Wood 1969)) } \tag{5}
\end{align*}
$$

and

$$
\begin{gather*}
m_{3}^{24}=1-6 u_{4}^{12}-40 u_{4}^{18}-32 u_{4}^{20}-294 u_{4}^{24}-352 u_{4}^{26}-422 u_{4}^{28}-2152 u_{4}^{30}-3720 u_{4}^{32} \\
-7720 u_{4}^{34}-\ldots \quad(\text { BCC }(1,2) \text { lattice }) \tag{6}
\end{gather*}
$$

where $u_{i}=\exp \left(-4 J_{i} / k T\right)$ is the usual low-temperature expansion variable. The conventonal order parameter expansions ($\left.\left\langle\sigma_{i}\right\rangle\right)$ corresponding to equations (3) and (5) are sued by Domb (1974).
In the case of equation (4), the quartet interactions over the s_{4} simplexes of the FCC latioce give the model a self-dual property (Wood 1972, Griffiths and Wood 1972) and both $M_{1}^{2,4}$ and $M_{3}^{2,4}$ have expansion coefficients of constant sign, hence the closest sygularity to the origin in these functions is real. Simple ratio calculations on very short stries clearly indicate that the zero-field specific heat and susceptibility, and the finctions $M_{1}^{2,4}$ and $M_{3}^{2,4}$ all yield power series with the same radius of convergence $u_{R}^{-2}=18 \pm 1$. It is doubtful in this instance, however, whether u_{R} forms a 'critical point' (Crifftth and Wood $1972 \dagger$), because the self-duality ensures that the radii of connergence of the high-temperature and low-temperature expansions of C_{v} overlap. Thus te 'physical' specific heat probably has a cusp singularity at the intersection of the light-temperature and low-temperature curves leading to a first-order transition before the singular point at u_{R} is reached. None the less, the above thermodynamic functions mpear to have a real singularity at u_{R} whose above value is confirmed by PA which yield etimates of u_{R} in the range $u_{\mathrm{R}}^{2}=0.057-0.061$ for $M_{1}^{2,4}$ and $M_{3}^{2.4}$. The series are too dorttosay much on the exponents, but a small exponent, probably in excess of $0 \cdot 025$, is indicated by PA.
The series (6) also appears to yield coefficients of constant sign. Here the coefficients arintsmooth enough for the ratio methods; however, the expansions are long enough wield a useful PA analysis on $\left(\mathrm{d} / \mathrm{d} u_{4}\right) \ln M_{3}^{2,4}$. All the PA clearly indicate that the desest singularity to the origin is real with at least one complex singularity lying close to the physical disc. Typical results from the $[m, n$] PA are given here for the case $m+n=16$.

[^0]| Exponent | 0.0675 | 0.0654 | 0.0658 | 0.0650 | 0.0645 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| u_{c}^{2} | 0.424 | 0.423 | 0.423 | 0.423 | 0.422 | |
| m | 6 | 7 | 8 | 9 | 10 | |

On this basis, we estimate $u_{c}=0.423 \pm 0.001$ (compare this with our previous, much less accurate estimate using the magnetization $\left\langle\sigma_{i}\right\rangle ; u_{\mathrm{c}}=0.40 \pm 0.02$, Griffiths and Wood 1974). We conjecture that the exponent in (7) is $\frac{1}{16}$, which may also hold for $\left(\sigma_{i}\right)$, and for the corresponding behaviour of $M_{3}^{2,4}$ and $M_{1}^{2,4}$ for the FCClattice at u_{R} above.

The two series (3) and (5) offer a more substantial basis for a PA analysis; if the two-dimensional result of Baxter (1975) is any guide, we should find evidence that M_{3}^{12} has a zero at the critical temperature, and that the critical exponent takes the same value as β, which is thought to be 0.3125 (Domb 1974). In both pair models relating to equations (3) and (5), the critical point u_{c} is known with some accuracy; thus for the eoc lattice $u_{c}=0.6647$ (Sykes et al 1972), and, with less certainty, $u_{\mathrm{c}}=0.709$ for the BCc $(1,2)$ lattice (Dalton and Wood 1969). Assuming that the triplet order parameters vanish at u_{c}, we can attempt to evaluate the exponent using the function $\left(u_{2}-u_{d}\right)$ (d/d $\left.u_{2}\right) \ln M_{3}^{1,2}$ (Hunter and Baker 1973). We list here some results from the $[m, n]_{\mathrm{PA}}$ for $m+n=N$.
(i) FCC lattice, $M_{3}^{1,2}$:

Exponent	0.321	0.328	0.341	0.337	0.313	0.319	$(N=30)(8)$
m	13	14	15	16	17	18	
Exponent	0.305	0.346	0.308	0.323	0.303		$(N=29)(9)$
m	12	13	14	15	17		

(ii) $\operatorname{BCC}(1,2)$ lattice:

Exponent	0.331	0.326	0.327	0.367	0.333	0.326	
m	13	14	15	16	17	18	$(N=32)(10)$
Exponent	0.316	0.317	0.325	0.324			$(N=29)(11)$
m	13	14	15	16			

The scatter of the above PA estimates is fairly typical of lengthy irregular lowtemperature series such as equations (3) and (5) for lattices of high coordination number, where the expansions of $M_{3}^{1,2}$ and $M_{1}^{3,2}$ do not converge up to the physiad singularity. Direct estimates of the physical singularity in the above triplet order parameters $M_{3}^{1,2}$ using the PA to the logarithmic derivatives yield estimates of u_{c} which are usually in excess of the accepted values quoted above by anything up to 7%.

Overall we feel that the numerical position supports the conjecture that the oponents in triplet order parameters will be the same as the magnetization exponent β and that the parameters vanish at T_{c}.

Adhoriledgment

Itis a pleasure to acknowledge a valuable discussion with Professor R J Baxter.

péerences

Buter R J 1975 J. Phys. A: Math. Gen. 8 1797-805
Buter R J, Sykes M F and Watts M G 1975 J. Phys. A: Math. Gen. 8 245-51
Ditton N W and Wood D W 1969 J. Math. Phys. 10 1271-302
Doab C 1974 Phase Transitions and Critical Phenomena vol 3, eds C Domb and M S Green (New York: Academic Press) pp 357-478
Grijuth H P and Wood D W 1972 J. Phys. C: Solid St. Phys. 6 2533-54
-1974 J. Phys. C: Solid St. Phys. 7 4021-36

- 1975 J. Phys. A: Math. Gen. 8 L47-50

Hanter DL Land Baker G A 1973 Phys. Rev. B 7 3346-92
Pats R B 1952 Phys. Rev. 88352
Richie D S and Essam J W 1975 J. Phys. C: Solid St. Phys. 8 1-16
Syees MF, Gaunt D S, Roberts P D and Wyles J A 1972 J. Phys. A: Gen. Phys. 5 640-52
Wood D W 1972 J. Phys. C: Solid St. Phys. 5 L181-3
Whod D W and Griffiths H P 1973 J. Math. Phys. 14 1715-22

[^0]: Theinequality relating to equations (18) and (19) should be reversed, see acknowledgment at end of paper.

